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LETTER TO THE EDITOR 

The partition function for an anyon-like oscillator 
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Abtrack. We compute *e partition function of an anyon-lik, hannonic oscillalor. The well 
known resulrS for both lhe bosonic and fermionic oscillators axe then re-obtained as particular 
cases of our function: The technique we employ is a non-relativistic version of the Green 
function melhod used in the computation of one-loop effective actions of quan" field theorj. 

Partition functions give the. statistical behaviour of a system of particles in thermal' 
equilibrium with each other and with a thermal bath. In general, the search for these 
functions is not an easy task although for some p&cular systems there are well known 
results. Naturally, many techniques are available for performing this task. In particular, 
Gibbons [I] used the fact that the partition functions for the bosonic and fermionic oscillators 
could be written as determinants of the relevant operator, with periodic and antiperiodic 
boundary conditions, respectively, in order to compute them using the <-function method. 

Specifically speaking, it follows directly from the definition of a partition function that, 
for any bosonic system, we can write 

ZB@) = Tre- BH 

= Idqo (xole-~Hlno) 

= 1 dxo  K(x0, xo; r = -3s) (1) 

where K ( x ,  y; 5 )  is the usual Feynman propagator. For ,the bosonic (harmonic) oscillator, 
we substitute its path integral representation and obtain 
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Analogously, using standard Grassmann variables, it can be shown that the partition function 
for the (second-order) fermionic oscillator is given by [1,2] 

ZF(g) = det'(w* - a2)lmtipedo8c. (3) 

Here, we will in fact generalize these results by making analogous calculations, but 
this time we shall impose a generalized boundary condition which contains the particular 
cases of the periodic and antiperiodic conditions discussed in Gibbon's paper. Besides, we 
shall use an alternative technique which is 'the non-relativistic version of the Green function 
method for computing effective actions in quantum field theory [3,4]. 

Suppose then'that we want to compute the following determinant: 
8; 

exp[r,8(o)] = det'(w2 + E der' (L)@ (4 
, ,  

where L, acts on functions that satisfy some given boundary condition specified by the label 
8. The power of the determinant given by the parameters is left completely arbitrary to take 
into account the cases that interpolate 'between the fermionic and the bosonic oscillators. 
Hence, playing with the boundary condition and the parameters, we can pass continuously 
from the bosonic to the fermionic oscillator. This is why we refer to this determinant as 
the partition function of an 'anyon-like' oscillator. 

Following a method usually employed in quantum field theory, we write 
, ,  

where the Green function G$(t ,  t') satisfies 

( 0 2  + a:)G:(t, t') = s(t - f ' )  

as well as some boundary condition (to be given in a moment). Integrating the above 
equation, we obtain 

r:(o)-rl(o)=2F~Udw)ollrdt~:(f,t).  (7) 

Since our purpose here is to use a generalized boundary condition, in the sense that 
the periodic and antiperiodic cases will appear & particular cases, and in order to make 
connection with the behaviour,of correlation functions of anyon-like systems, it is natural 
to impose the following 0-dependent condition: 

Gt(f + r, f ' )  = e-"G:(t, t'). (8) 

It is clear that this boundary condition becomes periodic for 0 = 0 and antiperiodic for 
0 = K. Depending on these conditions and the value of the parameter s, which can 
be thought of as a 'statistical' parameter, this determinant will be mapped into different 
partition functions. As these particul& cases are related to bosonic and fermionic systems, 
this condition of general periodicity could, in principle, be related to particles whose statistics 
interpolate bosons and fermions, i.e. anyons [SI. 
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It is straightforward to construct the Green function G:(t - t'). Using basically the 
same technique that Kleinert 161 employed for the simpler case  of periodic and antiperiodic 
boundary conditions, it can be shown that (see the appendix) 

~~ . .  

t - t' E [O. r ) .  (9) 1 eio(t-t'--r/2) e-ia(t-t'-r/2) 

sin(+ + e )  + sin(+t -e )  
. .  ~, 

0 G,(t - t') = - 

Substituting this Green function into equation (7), for the interval 10, r )  and with t = r', 
we obtain 

- - [-I +,-i(E+wr)] [! -e-i(O-or)])', (10) 

Recalling equation (4), we see that the exponential of r!(o) is the desired determinant. 
Identifying r = ,-i,9 (h = 1). taking ,B = 0 @enodic boundary condition) and s = -f, this 
determinant reduces, apart from a constant factor exp[rf(O)]; which hereafter we call C, to 
the partition function for a bosonic oscillator [ 1; 6,7], namely 

Note that any thermodynamical quantity which can be obtain4 from the partition function 
does not depend on C. 

Analogously, for a fermionic oscillator, we just ,make 0 = z (antiperiodic boundary 
condition) and s = +1, so that exp[r!(o)] reduces to the following partition function 

(12) 

This result corresponds to the partition function for a second-order fermionic oscillator. 
One can check this by explicitly calculating the eigenvalues for the Finkelstein-Villasante 
Grassmann oscillator (with N = 2) [SI and then finding its partitcon function by summing the 
trace of exp(-,9E.). This result differs from the one given by Gibbons [l] in the quadratic 
power of cosh(o,9/2), once he considered an equivalent linear Grassmann oscillator opposed 
to the quadratic case discussed here. This linear case can also be obtained from our 
discussion if we take, from the very beginning, the determinant of L'l2 instead of L, 
so that we find 

ZFC2)(,9) = exp[r;,(o)J = 4Ccosh2(oj3/2). 

zF(')(b) = e x ~ [ r ; , ( o ) ] ~ ~ ~  = 2c cosh(o,9/2) (13) 

which is the well known partition function for the linear fermionic oscillator [1,6,7]. 
For the general case, the partition function reads: 

z,:(B) = exP[rf(m)] 

)IS 
- - [.-iE (-1 + e-i(8+wr)) (1 - e - i ( O - W  

= 4'[coshZ ;~,9 - COS ~6'1 (14) 2 I I 

where for simplicity we put C = 1. Naturally, the above calculated partition functions are 
particular cases of equation (14). 
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Note that, in equation (14), we have left the'statistics p a k e t e r  s free. In fact, it 
may be a function of the periodicity parameter e,, interpolating between s(S = 0) = -f 
(bosonic case) and s(O = n) = + I  (fe,mionic case), as for exampie s(0) = -; + $f(S), 
where f ( 0 )  may be a function which satisfies f(0) = 0 and f (z)  = +I. We wonder 
whether this factor can be obtained from the functional integration of a generalized variable, 
with an arbitrary'commutation relation: interpolating the cases of bosonic (c-number) and 
Grassmannian variables, as a kind of q-deformed calculation [9,10]. 

Another possible interprehtion for this generalid partition function is in relation to 
parasystems [I I], where there is a parameter for which convenient limits reproduce the 
bosonic and fermionic oscillators [12]. However, the connection between these systems 
with the present calculations (if any) seems to be non-hivial and"deserves further study. 
This will be discussed elsewhere. 

One of the authors (CF) would like'to thank M Asorey and A ' J  Seguf-Santonja for 
enlightening discussions and the Theoretical Physics Deparlment of d e  University of 
ZaragoA for'hospitality during his stay in Zaragoza, where part of this work was carried out. 
The authors would also like to acknowledge A Das for helpful discussions. This work was 
partially supported by MEC-CAICYT and Conselho Nacional de Desenvolvimento Cienti 
fico e Tecnol6gico (CNPqf. 

Appendix 

In this appendix we construct the Green function (9). The'following discussion is similar to 
that found in Kleinert [6]. In fact, we generalize Kleinert's calculations for the cases where 
the boundary conditions are neither periodic nor antiperiodic, but anyon-like. 

! 

~~ 

, .  , ,, 

The spectral representation for G t ( f )  is given by 

'where U: = (2nm + Q ) / s  and we have identified the spectral representations of G$(t), 
which are, respectively, the Green functions associated with the first-order operators (i&&w) 
also satisfying the generalized periodic boundary condition (8). 

Using the Poisson summation formula [I31 

2 f (m) = Sm d p  2 kip f (p) 
m=-m -CO n=-m 

we can write for G$(t) 



~~. ~ 
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Identifying 

as rhe Green functions associated with the first-order operators (ia, iw), but ihis time valid 
for an infinite time intehal, we may cast (17) in the form 

m 
G z ( t )  = e-'"'G+(t - at). 

n=-U3 

Hence, to obtain G;(r), we need first to compute G&). By residue calculations this can 
be made after setting o '- iq. With this prescription, it can easily be shown that 

G*(z) = -@(q=t)eiiwl (20) 

where O(Z) is the usual Heaviside step function. Substituting (20) into (19). we obtain 

Since this expression has a period 5, we can restrict ourselves to the interval i E [O, t). 
Hence, the sum appearing in the right-hand side of-(21) can be obtained easily, yielding, 
for G:(t), 

Analogously, for GE(t), we have 

Of course, outside this interval, the result can be obtained by periodicity. Substituting (22) 
and (23) into (15) and rewriting f as t - t', we finally obtain 

e-ia/2 eio(t-t'-z/2) e-io(t-(-r/2) 
i - t' E [O, 5). (24) 

40 [ sin(+wt + 0) + sin(+ -0) 1 Gt(t - t') = - 

This Green function satisfies equations ' (6) and (8). This formula generalizes the 
previously known particular cases of periodic (0 = 0) and antiperiodic (0 = x )  boundary 
conditions, for which we find the well known results in accordance with the literature [6]. 
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